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In the cellular dynamical mean-field theory �CDMFT�, a strongly correlated system is represented by a small
cluster of correlated sites, coupled to an adjustable bath of uncorrelated sites simulating the cluster’s environ-
ment; the parameters governing the bath are set by a self-consistency condition involving the local Green’s
function and the lattice electron dispersion. Solving the cluster problem with an exact diagonalization method
is only practical for small bath sizes �eight sites�. In that case the self-consistency condition cannot be exactly
satisfied and is replaced by a minimization procedure. There is some freedom in the definition of the “merit
function” to optimize. We use Potthoff’s self-energy functional approach on the one- and two-dimensional
Hubbard models to gain insight into the best choice for this merit function. We argue that several merit
functions should be used and preference given to the one that leads to the smallest gradient of the Potthoff
self-energy functional. We propose a merit function weighted with the self-energy that seems to fit the Mott
transition in two dimensions better than other merit functions.
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I. INTRODUCTION

The discovery of high-temperature superconductors in the
late 1980s and the hypothesis that the mechanism of super-
conductivity in these materials is rooted in strong electron-
electron interactions has stimulated theoretical investigation
of lattice models of strongly-correlated electrons, such as the
Hubbard model. One of the early successes of this program
was a new understanding of the metal-insulator transition in
the Hubbard model using dynamical mean-field theory
�DMFT�.1 The DMFT approximation, proven exact in the
limit of infinite dimension,2,3 is that the momentum depen-
dence of the electron self-energy ��k ,�� may be neglected;
DMFT focuses instead on the frequency dependence, which
it determines approximately within a self-consistent proce-
dure. This is equivalent to replacing the original Hubbard
model by an effective model in which a single site—the
“impurity”—is embedded in the lattice through hybridization
with a bath of uncorrelated orbitals.4 The one-particle
Green’s function G���� for the correlated site then takes the
form

G�−1��� = � − ���� − ���� , �1�

where ���� is the approximate electron self-energy and ����
is the so-called hybridization function that incorporates the
effect of the uncorrelated bath on the electron propagation.5

The hybridization function is found by an iterative procedure
that involves �i� the solution of the impurity model and �ii�
self-consistence between the electron Green’s function at the
impurity site and the Green’s function G�k ,�� constructed
from the self-energy ���� via Dyson’s equation �more de-
tails on this below�.

The importance of short-range antiferromagnetic fluctua-
tions in Hubbard models and the possible existence of
d-wave pairing has motivated the extension of DMFT to pro-
cedures where not only a site, but a finite cluster of sites, is
embedded in the full lattice via a hybridization function. This
is further motivated by the strong momentum dependence of

the self-energy inferred from photoemission experiments.6

The dynamical cluster approximation �DCA� �Refs. 7 and 8�
and the cellular dynamical mean-field theory �CDMFT�
�Refs. 9 and 10� are two generalizations of DMFT to finite
clusters, that take into account short-range spatial correla-
tions. Both have revealed antiferromagnetic order and
d-wave pairing in the Hubbard model,9,11–16 and DCA com-
putations have been performed on large enough clusters to
show that d-wave superconductivity persists in the thermo-
dynamic limit.12 They differ in that DCA is formulated in
reciprocal space, by partitioning the Brillouin zone into a
finite number of patches, whereas the CDMFT is formulated
in direct space, by tiling the lattice into identical clusters
with open boundary conditions.

Solving the impurity problem in DMFT �or in its cluster
extensions� may be done at finite temperature via Quantum
Monte Carlo �QMC� or, as proposed in Ref. 17, by the exact
diagonalization �ED� of an associated Anderson Hamiltonian
at zero temperature. The Monte Carlo approach has the ad-
vantage of simulating an effectively infinite bath and of pro-
viding temperature information. On the other hand, it suffers
from the infamous fermion sign problem, which makes con-
vergence slow and the computational requirements impor-
tant, even with the latest continuous-time algorithms free of
discretization error.18 It is also very difficult to extract real-
frequency dynamical information from it. The characteristics
of the ED approach complement those of the QMC ap-
proach: �1� it is usually carried at zero temperature; �2� it
provides real-frequency information; �3� it does not suffer
from the sign problem but �4� it is limited to a small, discrete
bath system. This last characteristic is its most serious draw-
back, compared to the QMC approach, and the one we will
deal with in this paper.

In Sec. II we review the CDMFT algorithm and explain
how the restriction to a finite bath turns the self-consistency
into an optimization problem whose solution depends on a
choice of merit function. In Sec. III we review Potthoff’s
self-energy functional approach and assert that it provides
the best possible hybridization function for the finite-bath
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problem. In Sec. IV we show the outcome of CDMFT cal-
culations on the one- and two-dimensional Hubbard models,
using various merit functions, and compare them with SFA
results. We propose to select the merit function that mini-
mizes the gradient of the Potthoff functional, in the cases
where the SFA cannot be practically applied.

II. CELLULAR DYNAMICAL MEAN FIELD THEORY

In CDMFT, the full lattice Hubbard Hamiltonian H is
replaced by the following cluster �or impurity� Hamiltonian:

H� = − �
a,b,�

Nc

tab� ca�
† cb� + U�

a

Nc

na↑na↓

+ �
a,�,�

�a��ca�
† b�� + H.c.� + �

�,�

Nb

��b��
† b�� �2�

where ca� annihilates an electron of spin �= ↑ ,↓ on a physi-
cal site labeled a �a runs from 1 to Nc, the cluster size�, and
b�� annihilates an electron of spin � on a bath orbital labeled
� �� runs from 1 to Nb, the bath size�. The bath is param-
etrized by the energy of each orbital ���� and by the bath-
cluster hybridization matrix �a� �we assume spin-
independence for simplicity; this would not be the case in a
treatment of antiferromagnetism�. Note that “bath site” is a
misnomer, as bath orbitals have no physical position as-
signed to them. The clusters and baths used in this work are
shown on Fig. 1. Our convention is to add to the above

Hamiltonian a chemical potential term −�N̂, where N̂ is the
total number of electrons in the cluster and the bath.

Note that a more general parametrization of the systems
illustrated on Fig. 1�b� is possible;19,20 in particular, the most
general bath made of eight orbitals and compatible with the
discrete symmetry of the cluster of Fig. 1�b� would require
16 parameters. But our purpose is to illustrate the relation-
ship between the CDMFT-ED procedure and Potthoff’s self-
energy functional approach, and accordingly we choose to
limit the size of the parameter set. The conclusions of this
paper would not change if a more general set of bath param-
eters were used. In practice, cluster symmetries are used in
the exact diagonalization in order to accelerate convergence
and cut memory costs.19,21

The effect of the bath on the electron Green’s function is
encapsulated in the so-called hybridization function

�ab��� = �
�

Nb �a��b�
�

� − ��

, �3�

which enters the cluster electron Green’s function as

G�−1 = � − t� − ���� − ���� �4�

where we hide site and spin indices behind a matrix notation
for the cluster one-body terms �t�, including chemical poten-
tial�, the hybridization function ���, the self-energy ��� and
the cluster Green’s function �G��. These are 2Nc	2Nc ma-
trices, in fact made of Nc	Nc blocks in the absence of pair-
ing between electrons of opposite spin. The notation is the
same as in Ref. 21 and closely follows that of Maier et al.22

The basic computational task of DMFT approaches is to
find the best possible embedding of the cluster into the origi-
nal lattice; that is, to find the best possible value of the bath
parameters. In CDMFT, this is accomplished via a self-
consistency condition, using the following iterative algo-
rithm, summarized in Fig. 2:

�1� Start with a guess value of the bath parameters
��a� ,���, that define the hybridization function �Eq. �3��.

�2� Calculate the cluster Green’s function G���� with the
exact diagonalization solver and extract the cluster self-
energy ����. Here � stands for any frequency, complex or
real.

�3� Construct the momentum-dependent Green’s function

G�k̃ ,�� from that self-energy using Dyson’s equation,

G−1�k̃,�� = � − tk̃ − ���� , �5�

where tk̃ is the one-body matrix of the lattice Hamiltonian,
expressed as a matrix over cluster site indices and a function

of wave vector k̃ in the Brillouin zone of the superlattice of
clusters �i.e., the reduced Brillouin zone�.

�4� Project G�k̃ ,�� back on the cluster:

FIG. 1. �Color online� Examples of clusters �blue circles� with
finite baths �squares�. Cluster �a� is used to treat the one-
dimensional Hubbard model and �b� the two-dimensional Hubbard
model.

FIG. 2. �Color online� The CDMFT algorithm with an exact
diagonalization solver.
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G��� = �
k̃

1

G0
−1�k̃� − ����

, �6�

where �k̃ stands for an integral over the reduced Brillouin
zone, along with the appropriate factors of �2
�−d, d being
the spatial dimension.

�5� Calculate the matrix

G0
−1��� = G−1 + ���� . �7�

�6� Choose new bath parameters that make the combina-
tion �− t�−���� as close as possible to G0

−1. Since we have a
finite number of bath parameters at our disposal, this self-
consistency condition cannot be fulfilled for all frequencies,
but only optimized. This is done by minimizing the distance
function

d = �
�n

W�i�n�Tr�G�−1�i�n� − G−1�i�n��2 �8�

over the set of bath parameters. Changing the bath param-
eters at this step does not require a new solution of the
Hamiltonian H�, but merely a recalculation of the hybridiza-
tion matrix �Eq. �3��.

�7� Go back to step �2� with the new bath parameters
obtained from this minimization, and repeat until they are
converged.

In practice, the distance function �8� can take various
forms, depending on the heuristic weight function W���. So
far, ad hoc criteria and intuition have been used to choose the
weight function. Those that are benchmarked in this paper
are listed in Eq. �15� below. The sum over frequencies in Eq.
�8� is carried over a set of equally spaced Matsubara frequen-
cies, defined by some fictitious inverse temperature �, typi-
cally ranging from 20 to 200 �in units of t−1�.

Let us conclude this section by pointing out the various
types of errors inherent to the CDMFT-ED approach. The
most severe are the finite-size errors; there are two of them,
coming from the finite size of the cluster and bath, respec-
tively. The method is of course exact in the limit of infinite
cluster size, irrespective of the size of the bath; by contrast,
the limit of infinite bath, which is reached in practice in
Monte Carlo impurity solvers, does not yield exact results
for a finite cluster size. For a fixed total number of orbitals
�cluster+bath�, CDMFT contends that priority should be
given to bath orbitals and that the cluster should be just large
enough to incorporate short-range correlations. A closely re-
lated error arising in CDMFT-ED is caused by the finite
number of bath parameters; in principle one should use as
many parameters as possible.19,20 More important for us is
the error coming from the somewhat ad hoc choice of merit
function �8�; this leads to a sizeable variation in the value of
bath parameters, as we will see below. Again, the goal of this
work is to propose a way to manage this error. Finally, nu-
merical errors coming from the exact diagonalization tech-
nique itself and other numerical procedures like integration
and self-consistency are also present, but quite negligible in
comparison with the above sources of error.

III. SFA APPROACH

There is a more fundamental way to find the best possible
value of the bath parameters: Potthoff’s self-energy func-
tional approach �SFA�.23 Let us summarize this approach
here: The physical self-energy �� of any system obeys a
variational principle in the space of all possible self-energies,

	�
t,U���
��

	
��

= 0, �9�

where the functional 
t,U��� is given by


t,U��� = FU��� − Tr ln�− G0t
−1 + �� . �10�

G0t is the noninteracting Green’s function and FU��� is the
Legendre transform of the Luttinger-Ward functional ��G�:

FU��� = �U�G� − Tr��G� � 

��U

�G
. �11�

The value of the functional 
t,U��� evaluated at the physical
self-energy �� is precisely the grand potential of the system:

t,U����=
. We label the functional 
t,U with the matrix t
of one-body operators and by the interaction U, as the form
of the functional depends on both. Note however that the
Luttinger-Ward functional depends on U only, and so does
FU: it is universal, in the sense that its form depends only on
the interaction part of the Hamiltonian. This implies that FU
can be evaluated by considering a different Hamiltonian, H�,
that shares the same interaction part with the original Hamil-
tonian H, but has a different one-body part. In particular, the
cluster Hamiltonian �2� falls in that category. This allows us
to extract the value of the functional F evaluated at the
physical self-energy � of H� and to calculate


t,U��� = 
� + Tr ln�− G�� − Tr ln�− G� , �12�

where G stands for �G0t
−1−��−1 and 
� is the grand potential

associated with the cluster Hamiltonian H�. A more explicit
expression is


t,U��� = 
� − T�
�n

�
k̃

ln det�1 − �tk̃ − t� − ��i�n��G��i�n�� ,

�13�

where again tk̃ is the one-body matrix of the original Hamil-
tonian and t� that of the cluster Hamiltonian H�. T is the
absolute temperature and the sum is carried over Matsubara
frequencies �at zero temperature this translates into an inte-
gral over the imaginary-frequency axis�.

Thus, the SFA is an application of the exact variational
principle �Eq. �9��, using the exact functional, but on a re-
stricted space of trial self-energies � that are the physical
self-energies of an impurity �or cluster� Hamiltonian H�. The
bath parameters of H� are then chosen so as to make the
expression �13� stationary.

The bath system is of course assumed to be decoupled
from the cluster in the original Hamiltonian H. With a finite
bath, the functional 
t,U becomes effectively an ordinary
function of the bath parameters �a� and ��. An objective
answer to the question of what are the optimal values of the
bath parameters is obtained by solving the stationary condi-
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tion �
t,U /�h=0, where h stands for any one of the bath
parameters. This condition may be further explicated as

�
�n

Tr
�G�−1�i�n� − G−1�i�n�� ·
����i�n�

�h
� = 0. �14�

where G��� stands for the Brillouin zone averaged Green’s
function defined in Eq. �6�. Note that the hybridization func-
tion ���� enters G0t�

−1 , as can be seen from Eq. �4�. The
condition �14� does not entail d=0, since the latter can only
be satisfied with an infinite number of bath parameters, d
being a sum of positive-definite contributions. The SFA so-
lution is therefore not self-consistent for a finite bath
�G��G�, but it is, in a variational sense,24 the best possible
approximation to the original Hamiltonian by a cluster-bath
system.

If we think of the expression between brackets in Eq. �8�
as forming a vector in both frequency and site index space,
then the CDMFT tries to make that vector as small as pos-
sible, whereas the SFA tries to make it orthogonal to the
vector ��� /�h, or to make it vanish, the latter being impos-
sible with a finite bath. Whereas a perfect solution �d=0� of
the self-consistency condition would automatically satisfy
condition �14�, the converse is not necessarily true. The SFA
is not the only functional formulation from which DMFT can
be derived �see Ref. 1 for an extensive discussion�. However,
it has the distinction of being based on an exact evaluation of
the functional, albeit in a restricted space of parameters.24

Detailed benchmarks of the SFA approach against the ex-
act solution of half-filled the one-dimensional Hubbard
model have been performed in Ref. 25, for a large variety of
clusters �with and without baths�. The CDMFT has also been
benchmarked against the one-dimensional �1D� Hubbard
model at half-filling in Refs. 26 and 27. In this work we
focus instead on comparing the SFA approach with CDMFT,
at, and away from, half-filling.

IV. RESULTS

Figure 1�a� illustrates a simple bath-cluster system that
can be used to approximate the one-dimensional Hubbard
model: two cluster sites and four bath sites, with two hybrid-
ization parameters �1,2 and two bath energies �1,2. The pres-
ence of four bath sites �as opposed to two� is required in
order to have particle-hole symmetry at half-filling. This bath
system was used, for instance, in Refs. 26 and 27.

From a computational point of view, solving the SFA con-
dition �14� is more difficult to carry out than the self-
consistent CDMFT algorithm of Fig. 2. More instances of
the impurity solver must be called, and the optimization of
the functional �Eq. �12�� with respect to the bath parameters
must be very carefully done: it requires great numerical pre-
cision and is prone to instabilities, because of the relatively
weak dependence of 
t,U on the bath parameters. Thus, solv-
ing the SFA condition �14� can only carried out in practice on

small systems with few variational parameters, but it sheds
light on the proper choice of weighting function W to be used
in the CDMFT self-consistent procedure.

We have tested the following weight functions W���
against the SFA results:

W�i�n� = 1 within �n � �0,�c� �sharp cutoff� ,

�15a�

W�i�n� = 1/�n�extra weight at low �n� , �15b�

W�i�n� = Tr��2�i�n�� within �n � �0,�c� . �15c�

All of these functions have a finite support between �=0 and
some cutoff frequency i�c, and are evaluated on a grid of
Matsubara frequencies defined by a “fictitious” temperature
1 /� �recall that the ED solver is used strictly at zero-
temperature in this work�. Using a range of frequencies along
a segment parallel to �and slightly above� the real axis has
also been tried, but gives very unreliable results, presumably
because the landscape of the distance function �8� is much
more complicated, as the zeros �and poles� of the Green’s
function are located on the real axis. Other weight functions
W have also been benchmarked, for instance by putting
greater emphasis on low frequencies �W�i�n�=1 /�n

2�, or less
emphasis �W�i�n�=1 /��n�, or proportional to �Tr �� instead
of Tr���2. They bring nothing qualitatively different than the
choices �Eq. �15�� that we benchmark here.

Note that these various distance functions are all indepen-
dent of the choice of basis used for bath or site orbitals: The
factor multiplying W in �Eq. �8�� is a matrix trace, and so is
choice �Eq. �15c��. Choice �Eq. �15b�� is motivated by the
desire to give much more weight to low frequencies, and
choice �Eq. �15c�� by the desire to give more weight to fre-
quencies with a large self-energy. The cutoff �c may also be
chosen so as to weigh more low frequencies.

Figure 3 summarizes the benchmarks we have conducted
on the one-dimensional Hubbard model, using the cluster
illustrated on Fig. 1�a�, with U=4 and nearest-neighbor hop-
ping t=1. Panels �C� and �D� show the optimal value of the
bath parameter �1,2 and �1,2 as a function of chemical poten-
tial �within each pair, the two parameters are of course inter-
changeable, and so there is no point in labeling them sepa-
rately�. The SFA result is nonanalytic at a value of the
chemical potential ��c�1.4� corresponding to the edge of
the gap in the one-dimensional Hubbard model. In the range
�� ��c ,U /2�, the SFA values of �1+� and �1 are constant,
as they should be since the physical state of the system is the
same for all values of � within the Mott gap �the same ap-
plies to �2 and �2�. This supports our view that the SFA
provides the best possible values of the bath parameters. On
the other hand, the bath parameters obtained from CDMFT
with a sharp cutoff �Eq. �15a�� or a self-energy weight �Eq.
�15c�� are analytic at �c, even though they follow the general
trend of the SFA solution. The weight function �1 /� �Eq.
�15b�� leads to solutions that show some nonanalycity, but
depart more from the SFA solution than the other two.
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Figure 3�b� shows the norm of the gradient of the SFA
functional �Eq. �13�� evaluated at the CDMFT solutions
found using the weight functions �Eq. �15�� �this gradient is
precisely zero at the SFA solution�. This can be used as a
measure of the departure from the SFA solution, even in
cases where the SFA solution is not known. Again, the
weight functions �Eqs. �15a� and �15c�� appear to be the most
sensible, while the one that enhance low frequencies �Eq.
�15b�� has most of the time the largest gradient.

Figure 3�e� shows the CDMFT values of the bath energies
�1,2, using a sharp cutoff �Eq. �15a��, for different values of
the cutoff frequency �c. Panel F shows the SFA gradient for
the same set of data. This clearly shows that �c should be
small enough, but that �c=1 is too small and gives non op-
timal results in the gapped region. As a rule, the value �c
=2 provides the best results. One could also display the same
type of analysis as a function of fictitious temperature �−1. In
that case, one can show that the value �=100 �i.e., a ficti-
tious temperature at 1% of the hopping amplitude t� is a good
choice, in terms of smoothness and ease of calculation; this
is the value that was used in all other plots of this paper. On
the other hand, �=20 is definitely too low.

Finally, Fig. 3�a� shows the CDMFT values of the elec-
tron density n, using the weight functions �Eq. �15��, as well
as the value obtained from the SFA solution and, this time,
from Lieb and Wu’s exact solution of the one-dimensional

Hubbard model.28 Again, the weight functions �Eqs. �15a�
and �15c�� are closest on average to the SFA solution. Note
however that the latter does not coincide with the exact so-
lution and that the weight function �Eq. �15b�� yields a solu-
tion that is sometimes closer to the exact solution. The SFA
solution would move closer to the exact solution if either the
number of sites or the bath size were increased. But we argue
that it provides the best solution for the cluster and bath used
here, and that it should be the standard against which the
different CDMFT solutions are compared. We view the oc-
casional close proximity of a CDMFT solution to the exact
solution as accidental. In particular, the solutions obtained
from the low-frequency weight function �Eq. �15b�� can be
tuned to yield the correct value of the critical chemical po-
tential �c by adjusting �, but that does not mean a conver-
gence toward the exact value as �−1→0.

Figure 4 shows the same type of comparison, this time at
half-filling, as a function of U. Again, the sharp cutoff �Eq.
�15a�� and the self-energy weight �Eq. �15c�� stand out as the
best choices. Note that the gradient goes to zero in the U / t
→0 and t /U→0 limits, which is natural given that quantum
cluster methods such as CDMFT become exact in these lim-
its.

Figure 5 shows estimates of the ground-state energy den-
sity E0 of the 1D Hubbard model as a function of density n.
The exact Lieb and Wu result is shown for comparison, as

FIG. 3. �Color online� Plots illustrating the CDMFT and SFA solutions from the cluster of Fig. 1�a�, for the one-dimensional Hubbard
model, all expressed as a function of the chemical potential �. Panel �a�: electron density n �the exact Lieb & Wu result is also shown�. Panel
�b�: SFA gradient associated with the various CDMFT solutions. Panel �c� and �d�: hybridization parameters �1,2 and bath energies �1,2 for
the weight functions �Eq. �15�� and the SFA solution. Panel �e� and �f�: bath energies �1,2 for a sharp cutoff �15a� with various values of �c,
and the corresponding values of the SFA gradient. Unless indicated otherwise, the cutoff was set at �c=2 and the fictitious inverse
temperature at �=100.
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well as the SFA value obtained from the optimal value 
 of
the functional �Eq. �13�� by the relation E0=
+�n. For the
sharp cutoff �Eq. �15a��, we provide estimates of the ground-
state energy density obtained in two ways: �1� by calculating
the average �K+V�, where the average �K� of the kinetic
energy is calculated from the lattice Green’s function
G�� ,k�, and the average �V� of the potential energy is cal-
culated from the ground-state double occupancy at a cluster
site; �2� by calculating the functional �Eq. �13�� and adding
�n. We conclude from this graph that method �2� provides a
better estimate of the ground-state energy than method �1�,
even though the CDMFT solutions are not exact solutions of
the variational Eqs. �14�. The same conclusion is reached
with the other weight functions �Eq. �15��.

Let us turn to the two-dimensional Hubbard model, again
with nearest-neighbor hopping only. The cluster-bath system
is illustrated on Fig. 1�b�. We will start with a discussion of
the half-filled system, in which case only two bath param-
eters are necessary because of particle-hole symmetry: a hy-
bridization � �dashed lines on Fig. 1�b��, and a bath energy
�� �positive on bath sites labeled 5 through 8, negative on
the others�. The SFA solution for this system was obtained in
Ref. 29 as a function of U and revealed a Mott transition
with two critical values of the Coulomb repulsion �Uc1
�5.24 and Uc2�5.76�. This is illustrated by the full black
curve on Fig. 6: there is an insulating solution at strong U
that overlaps with a metallic solution as smaller U, and an

“unstable” solution linking the two, as one would expect for
a first-order transition described, e.g., by Landau’s theory of
phase transitions. The CDMFT solutions that are found for
the same problem are shown on Fig. 6 for three possible
weight functions. The Mott transition is visible through an
upturn of the bath parameters, but no hysteresis was ob-
served: sweeping U upward or downward did not make any
difference. The bottom panel of Fig. 6 shows the SFA gradi-
ent calculated from the three CDMFT solutions. Overall, the
weight function �Eq. �15c�� has the lowest gradient, except
exactly at the transition; paradoxically, this weight function
also best describes the transition: the minimum of � and the
sharp upturn in � occur right between the Uc1 and Uc2 found
in the SFA, and the changes observed near the transitions are
the sharpest of the three weight functions used. At the Mott
transition, one would naturally expect a hysteresis loop from
CDMFT solutions, or a local increase in the SFA gradient
due to shift of the solution from the vicinity of the metallic
SFA solution to the vicinity of the insulating SFA solution.
The solution found using the self-energy weight �Eq. �15c��
does precisely that. Overall, this example demonstrates the
advantage of the SFA solution over the CDMFT-ED ones: it
reveals most clearly the first-order character of the Mott tran-
sition. For comparison, the values of Uc1 and Uc2 that can be
extrapolated from the CDMFT-QMC calculations of Ref. 30
are Uc2�5.2 and Uc2�5.65. The agreement between the two
approaches is quite satisfactory.

Note that the 1 /� weight �Eq. �15b�� seems particularly
inadequate for the metallic solution, which runs against the
intuition that the 1 /� weight would better describe a state
with low-energy states like a metal. This is also true of the

FIG. 4. �Color online� Gradient of the SFA functional for the
various CDMFT weight functions �Eq. �15��. Same system as Fig.
3, but this time at half-filling, as a function of U.

FIG. 5. �Color online� Ground state energy density of the one-
dimensional Hubbard model, estimated in various ways �see text�.
The exact result is shown for comparison.

FIG. 6. �Color online� Top: hybridization parameter � for the
half-filled, two-dimensional Hubbard model, with weight functions
�Eq. �15a��, compared with the SFA result taken from Ref. 29.
Middle panel: same for the bath energy �. Bottom panel: the SFA
gradient for the same solutions.
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one-dimensional system described in Fig. 3. However, this is
naturally understood in the context of the variational Eqs.
�14�: in the low-frequency limit, the self-energy of a Fermi
liquid vanishes whereas that of a Mott insulator or
pseudogapped system is large. Thus, if the appropriate
weight is to be based somehow on the self-energy, the 1 /�
weight function should be more appropriate for a Mott insu-
lator, not a metal.

Finally, we probe d-wave superconductivity in the two-
dimensional Hubbard model. This is done like in Refs 14 and
15, using the cluster-bath system illustrated on Fig. 1�b�. In
this case we used six bath parameters: a pair ��1 ,�1� of bath
energy and hybridization for the “first” bath, made up of the
orbitals labeled 5 through 8; a similar pair ��2 ,�2� for the
“second” bath, made up of the orbitals labeled 9 through 12;
two pairing parameters �d1 ,d2�, multiplying pairing opera-

tors d̂1,2 with d-wave symmetry, symbolically represented by

the dashed curves on Fig. 1�b�. The exact expression of d̂1 is

d̂1 = a5↑a6↓ + a6↑a5↓ + a7↑a8↓ + a8↑a7↓

− a5↑a7↓ − a7↑a5↓ − a6↑a8↓ − a8↑a6↓ + H.c. �16�

and d̂2 has the corresponding expression for bath sites 9 to
12. The introduction of the pairing parameter breaks the con-
servation of particle number in the cluster-bath system, and
anomalous averages may be nonzero, which is taken as the
signature of superconductivity in the system. in particular,
what we call the d-wave order parameter is the ground-state
average of the operator

D̂ = �
k

�cos�kx� − cos�ky���ck↑c−k↓ + c−k↑ck↓ + H.c.� ,

�17�

where �k stands for an integral over the original Brillouin
zone �along with the appropriate factors of 2
�. The average

�D̂� can be calculated from the lattice Green’s function
G�� ,k� obtained from the CDMFT solution.

Figure 7�a� shows the d-wave order parameter for the
two-dimensional Hubbard model with nearest-neighbor hop-
ping t=1 and on-site repulsion U=8, as a function of elec-
tron density. We only show the hole-doped side, since this
system is particle-hole symmetric. The outcome of four CD-
MFT weight functions is plotted. The three weight functions
�Eq. �15�� are used with �c=2, and in addition a higher cut-
off ��c=5� is used with weight function �Eq. �15c��. At this
point this system is beyond the reach of the SFA, as it pre-
sents considerable numerical challenges. However, this does
not prevent us from computing the SFA gradient once the
CDMFT solution is found, and this can be used as a heuristic
measure of the proximity to the unknown SFA solution. All
CDMFT solutions found have superconductivity, and
roughly in the same range, so the choice of weight function
is largely a quantitative, not qualitative, issue. The use of a
larger cutoff ��c=5� can be rejected on the basis that it dis-
plays the largest SFA gradient of the set �this agrees again
with the conclusions drawn from the one-dimensional sys-
tem�. The 1 /� weight function �Eq. �15b�� seems more ap-

propriate in the underdoped region: it has the lowest SFA
gradient there and the largest SC order parameter; this is also
where the spectral gap is largest �not shown�. On the other
hand, the sharp cutoff weight �Eq. �15a�� is more adequate in
the overdoped region, where the SC gap is smaller. This
again confirms that the 1 /� weight should not be used in a
metallic of low-gap phase.

V. CONCLUSION

In the cellular dynamical mean-field theory, the self-
consistency condition G���
G��� cannot be exactly satis-
fied when using an exact diagonalization solver, because of
the small size of the bath. In other words, the distance func-
tion �Eq. �8�� cannot be made to vanish, but can only be
minimized. In that case, an ambiguity arises because of the
arbitrariness in the choice of the weight function W���, and
this ambiguity translates into a variety of solutions with
sometimes important quantitative differences. We argued that
Potthoff’s self-energy approach provides the best possible
solution for the CDMFT bath parameters; in particular, it is
nonanalytic at the critical value �c of the chemical potential
that separates the Mott and metallic phases and the bath hy-
bridizations and energies are independent of � within the
Mott gap; also, the SFA yields a first-order Mott transition as
a function of U in two dimensions, which is not seen in the
CDMFT solution of the same bath system. We benchmarked
different weight functions against the solution found in Pot-
thoff’s self-energy approach, and argued that the best choices
are provided by weight functions that have the lowest SFA
gradient. Weight functions that promote low frequencies in
an ‘exaggerated’ way, e.g., as 1 /� �Eq. �15b��, are less ad-
equate for phases with no or weak spectral gap, because the
self-energy is small at low frequencies in those phases. We
proposed a weight function proportional to the self-energy
squared �Eq. �15c��, inspired by the role played by the self-
energy in the SFA variational condition �14�. This weight

FIG. 7. �Color online� Top: d-wave order parameter as a func-
tion of density in the two-dimensional Hubbard model, obtained
from CDMFT, with the weight functions �Eq. �15��. Bottom: the
SFA gradient for the same solutions.
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function is the most successful at describing the U-driven
Mott transition in two dimensions. We also pointed out that
the fictitious temperature used in evaluating the distance
function should be sufficiently small, �=100 / t being a good
rule-of-thumb value.
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